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Let D�R2 be the open unit disk. We consider best harmonic approximation to
functions continuous on D� . In a basic paper, Hayman et al. characterized best
harmonic approximants which are themselves continuous on D� . In this paper we
give sufficient conditions and many simple examples of functions continuous on D�
which have no best harmonic approximants which are continuous on D� . � 1999
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1. INTRODUCTION

In this paper we consider best approximation to continuous functions by
harmonic functions. Specifically, let D be a domain in R2 and let H be the
set of harmonic functions on D. If f is a bounded function on D, let

& f &=sup[ | f (x, y)|: (x, y) # D].

If f is a bounded function on D, let d=inf[& f &h&: h # H].
If h # H and satisfies & f &h&=d, then h is called a best harmonic

approximant to f. If in addition h is continuous on D� , then h is called a
continuous best harmonic approximant.

The study of best harmonic approximation was initiated by Burchard
[1], who obtained existence and characterization results for approximation
by continuous harmonic functions. These results were expanded in [3],
which is the basis for the present paper. Before continuing a general discus-
sion of the topic, we present Theorems 1.1, 1.2, and 1.3, which are basic.
The proofs are found in [3].

Theorem 1.1. If f is a bounded function on D, then a best harmonic
approximant exists.
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Theorem 1.2. Suppose D is a Jordan domain and f is continuous on D� .
If h is a continuous best harmonic approximant to f, then h is the unique best
harmonic approximant to f.

The proof of Theorem 1.2 depends on the notion of linked sets.

Definition. Let A be a compact subset of D� and let $(A) be the union
of the domains of Ac which lie entirely in D� . Then A� =A _ $(A) is called
the hull of A.

We note that if D is a Jordan domain, we in fact have $(A)�D.

Definition. If A1 and A2 are disjoint compact subsets of D� , then A1

and A2 are linked if A� 1 & A� 2 {<.

Now if h is a harmonic function on D, let

K o
+=[(x, y) # D: f (x, y)&h(x, y)=& f &h&]

and

K o
&=[(x, y) # D: f (x, y)&h(x, y)=&& f &h&].

If h is also continuous on D� , let

K+=[(x, y) # D� : f (x, y)&h(x, y)=& f &h&]

and

K&=[(x, y) # D� : f (x, y)&h(x, y)=&& f &h&].

Obviously if D is a bounded domain and f is continuous on D� , then at
least one of K+ and K& is nonempty.

The following theorem is a characterization of continuous best harmonic
approximants.

Theorem 1.3. Suppose D is a Jordan domain. If f is continuous on D� and
h is a continuous best harmonic approximant, then the sets K+ and K& are
linked.

Conversely, suppose h is a harmonic function on D and continuous on
D� such that the sets K+ and K& are linked. Then h is the unique best
harmonic approximant to f.

In view of Theorems 1.2 and 1.3, an interesting problem would be to
characterize those functions f, continuous on D� , which have a continuous
best harmonic approximant. In [3] an example is given of a continuous
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function on D� which has no continuous best harmonic approximant. In
this paper we show that this phenomenon is common and includes some
very simple functions. We do this by giving a sufficient condition for real
analytic functions to possess no continuous best harmonic approximant.

See also the papers [2, 7, 8] for related results.
We finish this section with three corollaries to Theorem 1.3 concerning

some cases when f has a constant best harmonic approximant.

Corollary 1.4. Let D be a Jordan domain and f continuous on D� .
Define

m=inf[ f (x, y): (x, y) # D� ]

and

M=sup[ f (x, y): (x, y) # D� ].

Let

E1=[(x, y) # D� : f (x, y)=m]

and

E2=[(x, y) # D� : f (x, y)=M].

Then f has a constant best harmonic approximant if and only if E� 1 and E� 2

are linked.

Proof. The theorem follows from the observations that any constant
best harmonic approximant must be h= 1

2(m+M), and that in this case,
we have K&=E1 and K+=E2 .

We next note that Corollary 1.4 can be used to characterize the metric
complement of H, that is, the set of functions f for which 0 is the best
harmonic approximant.

Corollary 1.5. Using the notation of Corollary 1.4, f is in the metric
complement of H if and only if m=&M and E1 and E2 are linked.

Corollary 1.6. Let D be the open unit disk and suppose f is a radial
function continuous on D� , that is, f (x, y) depends only on r=- x2+ y2.
Then f has a constant best harmonic approximant.

Proof. Clearly the sets E1 and E2 , as defined in Corollary 1.4, are
linked, since E1 and E2 are circles centered at the origin.
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2. FUNCTIONS WITH NO CONTINUOUS APPROXIMANTS

As mentioned in the Introduction, an example is given in [3] of a func-
tion, continuous on the closed unit disk D� , which has no continuous best
harmonic approximant. The example is complicated. In this section we
study the problem of whether f has a continuous best harmonic approxi-
mant. We show that a function as simple as f (x, y)=x3 does not have a
continuous best harmonic approximant on the unit disk D� .

In the rest of this section we assume f (x, y) is a real analytic function
defined on a Jordan domain D and is continuous on D� .

Let F=[2f =0], F+=[2f >0], F&=[2f<0].
F is a real analytic set and we may study F in terms of its dimension.
If dim F=2, then f is harmonic on D and hence the approximation

problem is trivial.
If dim F=0, then f is either subharmonic or superharmonic on D, and

the approximation problem is solved as in [3, Corollary to Theorem 3],
where the best approximant is continuous.

Hence we assume dim F=1.
Now let h be a best harmonic approximant to f. Let Z=[(x, y) # D:

{( f &h)=0� ], the set of critical points of f &h in D.
Z could be empty, but note that we have K o

\ �Z.
In the remainder of this section, we look specifically at the function

f (x, y)=x3 defined on the unit disk. We show that f has no continuous
best harmonic approximant. We will also indicate how the argument
applies to similar functions. In the next section we will adapt the argument
to include a wider class of functions. The Hopf lemma is important in this
section. See [6, p. 240].

Lemma 2.1 (Hopf). Let D be an open set with boundary �D which is
smooth at (xo , yo) # �D. Let u(x, y) # C2(D) & C 1(D� ), 2u�0 on D, and
u(xo , yo)=max[u(x, y): (x, y) # D� ]. If u is not a constant, then the outer
normal derivative (�u��&)(xo , yo)>0.

Lemma 2.2. For the function f (x, y)=x3 defined on the unit disk D, we
have K o

+ �F& and K o
& �F+ .

Proof. We have 2f =6x, hence F=[x=0] & D, F+=[x>0] & D,
and F&=[x<0] & D. Now suppose first that K o

+ & F+ {<. In F+ , f &h
is subharmonic. By the maximum principle, f &h is constant on F+ , imply-
ing 2f =0 on F+ , a contradiction.

Now suppose K o
+ & F{<. Let (0, yo) # K o

+ & F. Now we have f &h is
subharmonic in F+ with a maximum value at (0, yo). By the Hopf lemma,
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we have (�( f &h)��&)(0, yo)>0. But (0, yo) # Z, which means {( f &h)
(0, yo)=0, implying all directional derivatives of f &h are 0 at (0, yo), a
contradiction.

It follows that K o
+ �F& . The argument that K o

& �F+ is similar.

Lemma 2.3. Let D be a domain symmetric about the y-axis. Let f be a
bounded function on D satisfying f (&x, y)=&f (x, y). Then there exists a
best harmonic approximant h on D satisfying h(&x, y)=&h(x, y).

Proof. Let g be a best harmonic approximant as guaranteed by
Theorem 1.1. We have

&d� f (x, y)& g(x, y)�d,

&d� f (&x, y)& g(&x, y)�d,

&d� & f (x, y)& g(&x, y)�d,

&d� f (x, y)+ g(&x, y)�d,

&d� f (x, y)&(&g(&x, y))�d,

for all (x, y) # D. Hence &g(&x, y) is a best harmonic approximant to f.
Define h(x, y)= 1

2(g(x, y)+(&g(&x, y))). Then h(x, y) is a best harmonic
approximant to f and satisfies h(&x, y)=&h(x, y).

We note that in the case of uniqueness, the best harmonic approximant
h satisfies h(&x, y)=h(x, y). In particular, we have

Corollary 2.4. Let D be a Jordan domain symmetric about the y-axis.
Let f be a function continuous on D� satisfying f (&x, y)=& f (x, y) on D� . If
h is a continuous best harmonic approximant to f, then h(&x, y)=&h(x, y)
on D� .

Theorem 2.5. The function f (x, y)=x3 defined on the unit disk D has
no continuous best harmonic approximant.

Proof. Suppose h is a continuous best harmonic approximant to f. By
Corollary 2.4, we have h(&x, y)=&h(x, y) on D� .

By Theorem 1.3, the sets K+ and K& are linked, i.e., K� + & K� & {<.
Since by Lemma 2.2 we have K o

+ �F& and K o
& �F+ , the only way K+

and K& can be linked is if either K+ contains the entire half-boundary
�D & [x�0] or K& contains the entire half-boundary �D & [x�0].

By the oddness conditions on f and h, we have that K+ and K& are
reflections of each other across the y-axis. This implies that K+ and K&

have non-empty intersection on �D, a contradiction.
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Remarks. It is interesting to observe that the solution to the one
variable version of the same problem does not carry over to the two
variable case. In other words, if we consider the function f (x)=x3 on the
interval [&1, 1], then the best harmonic approximant to f is h(x)=mx,
where m=0.75. But h(x, y)=(0.75) x is not the best harmonic approxi-
mant to f (x, y)=x3 on the unit disk D. This would also be true of the
domain D is changed to [&1, 1]_[&1, 1]. This fact also provides an
estimate for the distance from f (x, y)=x3 to H, namely, d<1&m=0.25.
Note also that if we consider the function f (x, y)=xn, where n is an integer
�2, then we have

(a) no continuous best harmonic approximant if n is odd (the proof
of Theorem 2.5 would apply)

(b) a continuous best harmonic approximant if n is even ( f is sub-
harmonic on D). See [3, Corollary to Theorem 3].

The argument used to prove Theorem 2.5 can be modified to apply to a
more general setting. We need three more lemmas.

Lemma 2.6. Suppose f # C�(D) (smooth). Suppose further that (xo , yo)
# D is a critical point of f, but not an isolated critical point. Then fxx fyy& f 2

xy=0
at (xo , yo).

Proof. Obviously we have fx(xo , yo)= fy(xo , yo)=0. By Morse theory
[4, p. 8], since (xo , yo) is not isolated, it must be a degenerate critical
point, i.e., the Jacobian Jf (xo , yo)=0. This means fxx(xo , yo) fyy(xo , yo)&
fxy(xo , yo)2=0.

Lemma 2.7. Suppose f # C�(D), that f has a local maximum (or minimum)
at (xo , yo) # D, that this maximum is not an isolated critical point of f, and
that 2(xo , yo)=0. Then all first, second, and third partial derivatives of f
vanish at (xo , yo).

Proof. Without loss of generality, assume (xo , yo)=(0, 0). Obviously
we have fx= fy=0 at (0, 0). By Lemma 2.6 we have fxx fyy& f 2

xy=0 at
(0, 0). But since fxx=& fyy at (0, 0), we must have fxx= fxy=0 at (0, 0).
Now suppose by way of contradiction that at least one third order partial
derivative of f does not vanish at (0, 0). Then we may write

f (x, y)= f (0, 0)+ax3+bx2y+cxy2+dy3+O(r4)

as r � 0, where at least one of a, b, c, and d is non-zero (where r=
- x2+ y2). On the line y=mx we have
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f (x, y)= f (0, 0)+ax3+bmx3+cm2x3+dm3x3+O(r4)

= f (0, 0)+(a+bm+cm2+dm3) x3+O(r4)

as r � 0. Choosing m so that a+bm+cm2+dm3{0, we see that (0, 0) is
not a local maximum or minimum point. This contradiction implies all
third partials of f vanish at (0, 0).

Lemma 2.8. Let D be a circular sector shaped domain with angle : at the
vertex (xo , yo). Let u # C�(D� ), 2u�0, u(xo , yo)=max[u(x, y): (x, y) # D� ],
and suppose that all first, second, and third partial derivatives are 0 at (xo , yo).
If :>?�4, then u is a constant.

Proof. Without loss of generality, assume (xo , yo)=(0, 0) and that one
of the defining rays of D is the positive x-axis. Considering the plane to be
the complex plane, make the change of variables w=z;, where ;=?�:.
Then z=w1�; (any branch). Define f (w)=u(z)=u(w1�;). If we let z=rei%

and w=\ei., we have f (w)=u(\1�; cos .�;, \1�; sin .�;). Since u has a
maximum value at (0, 0), so does f. Also, if u is not a constant, then f is
not a constant. Assuming u is not a constant, we have by the Hopf lemma

0<
�f
�&

(0, 0)=
�f
�\

(0, 0).

But �f ��\ = ux(\1 �; cos .�;, \1 � ; sin .�;) (1 �;) \ (1 �;) & 1 cos .�; +
uy(\1�; cos .�;, \1�; sin .�;)(1�;) \(1�;)&1 sin .�;.

Since all first, second, and third derivatives of u vanish at (0, 0), we have

u(x, y)=u(0, 0)+O(r4) as r � 0.

Hence

ux(x, y)=O(r4)

and

uy(x, y)=O(r3) as r � 0.

This means

�f
�\

=O(\3�;) \(1�;)&1+O(\3�;) \(1�;)&1

=O(\(4�;)&1) as \ � 0.
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Since (4�;)&1=(4:�?)&1>0, this implies (�f��\)(0, 0)=0, a contra-
diction.

Theorem 2.9. Let g(x) be a real analytic function (other than g(x)=
ax+b) defined on (&1, 1) and continuous on [&1, 1] and define f (x, y)=
g(x) y on the unit disk D� . Then f has no continuous best harmonic approximant.

Proof. Suppose h is a continuous best harmonic approximant. By an
obvious variation of Corollary 2.4, h satisfies h(x, &y)=&h(x, y). We
have 2f (x, y)= g"(x) y. Since g"(x) is real analytic and not identically
zero, we have the set F is a discrete set of vertical lines together with the
x-axis. The sets F+ and F& are the vertical half-strips in between the vertical
lines of F, with the x-axis dividing a strip into two pieces, one of which is
a part of F+ and the other piece is a part of F& . It is possible that a vertical
line in F is bordered on both sides by either F+ or F& (i.e., g"(x) does not
change sign at this line). With this in mind, let us change the definition
of F, F+ , and F& so that F does not include such lines, and that either F+

or F& does include such lines. The argument used in Lemma 2.2 can be
used to show that K o

+ & F+=< and that K o
+ and K o

& do not intersect F
except possibly at the points where F intersects the x-axis. The Hopf lemma
(Lemma 2.1) does not apply at these corner points. But if we assume K o

+

or K o
& goes through a corner point, then this corner point would be a non-

isolated critical point of f &h, and so Lemma 2.7 would apply. It then
follows from Lemma 2.8 that f &h would be constant on a cell of Ko

+ or
Ko

& , a contradiction. Hence K o
+ �F& and K o

& �F+ . Since K+ and K&

must be linked, either K+ or K& must contain at least an entire half-
boundary [ y�0] & �D or [ y�0] & �D. By the oddness property of f &h,
this would imply K+ and K& have non-empty intersection on the boundary,
which is a contradiction.

Another class of functions on the unit disk D� which have no continuous
best harmonic approximant is the class of homogeneous polynomials which
are odd in x (or y).

Theorem 2.10. Let f (x, y) be a homogeneous polynomial of degree n�3
which also satisfies f (&x, y)=& f (x, y). Then f has no continuous best
harmonic approximant.

Proof. Suppose h is a continuous best harmonic approximant. Then we
have h(&x, y)=&h(x, y). Now we have 2f (x, y) is a homogeneous poly-
nomial of degree n&2. It follows that F is a finite union of rays emanating
from the origin, and F+ and F& are circular sectors. While Lemma 2.8
need not apply at (0, 0), it is still impossible for K o

+ or K o
& to contain

(0, 0) since K o
+ and K o

& are reflections of each other across the y-axis. If
either K o

+ or K o
& contained (0, 0), we would have K o

+ and K o
& intersection
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at (0, 0), which is a contradiction. It follows as in Theorem 2.5 and
Theorem 2.9 that the only way K+ and K& can be linked is if K+ or K&

contains an entire half-boundary [x�0] & �D or [x�0] & �D. By symmetry,
this implies K+ and K& intersect on �D, a contradiction.

3. MORE GENERAL RESULTS

The techniques used to prove Theorems 2.5, 2.9, and 2.10 will apply to
real analytic functions f (x, y) satisfying f (&x, y)=& f (x, y) and for which
the sets F, F+ , and F& satisfy what we may call an inadmissible configura-
tion. In order to apply Lemma 2.8, we must have that the lines in F divide
D into non-empty regions F+ and F& and the lines in F intersect at angles
:>?�4. Also, an easy condition to state can be given which forces K+ or
K& to contain an entire half-boundary in order to be linked. It is contained
in the following definition.

Definition. The sets F, F+ , and F& are in an inadmissible configura-
tion if

(a) F+ and F& are non-empty,

(b) the lines in F intersect at angles :>?�4,

(c) a cell G on F+ or F& satisfies the condition that G� & �D is
non-empty and connected.

We are now in a position to prove a fairly general result concerning
discontinuous harmonic approximants.

Theorem 3.1. Let f (x, y) be a real analytic function on the unit disk D,
continuous on D� , satisfying f (&x, y)=&f (x, y). If the sets F, F+ , and F&

are in an inadmissible configuration, then f has no continuous best harmonic
approximant on D.

Proof. Suppose h is a continuous best harmonic approximant to f.
Then we have h(&x, y)=&h(x, y) and the sets K+ and K& must be
linked. As in the proof of Theorem 2.9, condition (b) in the definition of
inadmissible configuration implies a line in K o

+ or K o
& cannot go through

a corner from one cell of F& or F+ to another. It follows that K o
+ �F&

and K o
& �F+ . Conditions (a) and (c) then imply that a line in K o

+ cannot
enclose a cell in F+ or escape to the boundary in two disconnected pieces
of the same cell of F& . A similar statement is true of a line in K o

& . Also
by the oddness property of f, the closure of a single cell in F+ or F& can-
not intersect the boundary of D in more than a half-boundary. It follows
that in order for K+ and K& to be linked, K+ or K& must contain an
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entire half-boundary. By the oddness property of f &h, K+ and K& are
reflections of each other across the y-axis. It follows that K+ and K& inter-
sect on the boundary of F, a contradiction.

Theorem 3.1 can be used to construct many examples of real analytic
functions on the unit disk which have no continuous best harmonic
approximant. The following lemma is also used and may be of independent
interest.

Lemma 3.2. If g(x, y)=��
j, k=0 ajk x jyk converges on the unit disk D,

then there exists f (x, y)=��
j, k=0 bjkx jyk defined on D such that 2f (x, y)=

g(x, y) on D.

Proof. Letting z=x+ yi, we may write g(x, y) in complex variables
notation as g(x, y)=��

j, k=0 cjk z jz� k. Since g(x, y) is real valued, we have
g(x, y)=g� (x, y)=��

j, k=0 c� jkz� jzk for all z # D. This implies cjk=c� jk for all
0� j, j<�.

Now define f (x, y)=4 ��
j, k=0 (cjk �( j+1)(k+1)) z j+1z� k+1, which

converges on D.
Recall that 2f =(1�4)(�2f��z� �z), hence 2f =g on D. Also f� (x, y)=

4 ��
j, k=0 (c� jk � ( j + 1) (k+1)) z� j + 1 zk + 1 = 4 ��

j, k=0 (ckj � ( j+1)(k+1))
zk+1z� j+1=f (x, y), so f (x, y) is real valued. Finally, we may rewrite f in
the form f (x, y)=��

j, k=0 bjkxiyk, and each b jk is real.
Now suppose the solution set to g(x, y)=��

j, k=0 ajk x jyk=0 divides the
closed unit disk D� into cells which are in an inadmissible configuration.
Then by Lemma 3.2 we may find f (x, y)=��

j, k=0 bjkx jyk such that 2f =g.
It is easy to verify that only odd powers of x appear in f (x, y), and hence
f (&x, y)=&f (x, y).

It follows that f has no continuous best harmonic approximant.
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